0 用語と記号

0.1 用語

- 定義 (Definition, 略 Def.), 定義する (define)
 新出の言葉や記号などに (数学的な) 意味を定めること.
- 命題 (Proposition, 略 Prop.)

次のように二通りの意味がある.

- (1) 正しい(真)か正しくない(偽)かが定まる文章や式のこと.
 - 例.「任意の実数xに対して、xより大きい実数yが存在する」は真の命題.
 - 例. 「任意の実数 x に対して, xy = 1 となる実数 y が存在する」は偽の命題.
- (2) 上の(1) における真の命題のこと.

以下、単に命題といったら、真の命題を意味するものとする.

• 公理 (Axiom)

明らかに正しいとして認められた命題のこと. 自明な真理. そのほかの命題を導き出すための前提として 導入される最も基本的な仮定.

公理の例.

- i) 2 つの点が与えられたとき、その 2 点を通る直線を引くことができる. (ユークリッド幾何学)
- ii) a = b ならば a + c = b + c である. (ユークリッド原論より)
- iii) どんな自然数に対しても、その数の「次の」自然数が存在する. (ペアノの公理)
- 証明 (Proof)

定義や公理,あるいは既知の命題を仮定として,ある命題が正しいことを論理的に導くこと.論証.

• 定理 (Theorem, 略 Thm.)

命題のうち特に重要度が高いもの.

(ピタゴラスの定理,三角関数の加法定理,平均値の定理,などのように名前が付いているものから,特に名前が付いていないものまで様々である.)

• 補題 (Lemma, 略 Lem.)

定理や命題を証明する際に導入される補助的な命題のこと. 補助定理ともいう.

• 系 (Corollary, 略 Cor.)

定理や命題の直接の帰結として得られる命題のこと.

0.2 数の集合の記号

- 自然数全体の集合: $\mathbb{N} = \{1, 2, 3, \dots\}$ (Natural numbers) ※ 0 を含める流儀もある.
- 整数全体の集合: $\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, \dots\}$ (Integers, 独 Zahlen)
- 有理数全体の集合: $\mathbb{Q} = \{\frac{a}{b} \mid a, b \in \mathbb{Z}, b \neq 0\}$ (Rational numbers = 比の数, Quotients = 商)
- 実数全体の集合: $\mathbb{R} = \mathbb{Q} \cup \{$ 無理数全体 $\}$ (Real numbers)
- 複素数全体の集合: $\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}$ (Complex numbers)

包含関係: $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$

0.3 ギリシャ文字

Α, α	alpha アルファ	Ι, ι	iota イオタ	Ρ, ρ	rho □−
B, β	beta ベータ	Κ, κ	kappa カッパ	Σ, σ	sigma シグマ
Γ, γ	gamma ガンマ	Λ, λ	lambda ラムダ	Τ, τ	tau タウ
Δ, δ	delta デルタ	Μ, μ	mu ミュー	Υ, υ	upsilon ウプシロン
E, ϵ, ε	epsilon イプシロン	Ν, ν	nu ニュー	Φ, ϕ, φ	phi ファイ
Z, ζ	zeta ゼータ	Ξ, ξ	xi クサイ	Χ, χ	chi カイ
H, η	eta エータ	О, о	omicron オミクロン	Ψ, ψ	psi プサイ
Θ, θ	theta シータ, テータ	Π,π	pi パイ	Ω, ω	omega オメガ

0.4 論理記号

··.	ゆえに, therefore	s.t. ~	~のような, such that	
::	なぜならば, because	V	または, or	
3	存在する, exist (存在記号)	^	かつ, and	
∃!, ∃1	一意的に存在する	$\stackrel{\text{def}}{\Longleftrightarrow}$	左辺を右辺で定義する	
A	任意の, any, arbitrary (全称記号)	:=	左辺を右辺で定義する	
\Rightarrow	ならば、then	\Leftrightarrow	同值,必要十分, if and only if	

例. 論理記号を用いて表された命題を考える:

命題 P: $\exists x \in \mathbb{R} \ (x^2 = -1).$

これは「 $\exists x \in \mathbb{R}$ s.t. $x^2 = -1$ 」と表しても同義である. 言葉で表すと

「There exists $x \in \mathbb{R}$ such that $x^2 = -1$.」(ある実数 x が存在して $x^2 = -1$ となる.)

という意味であり、明らかに P は偽の命題である.

さて, ここで P の否定命題 $\bar{\mathbf{P}}$ を考えよう. どんな実数も条件 $x^2=-1$ を満たさない, という意味の文を作ればいいから, P の否定文は

「For any $x \in \mathbb{R}$, $x^2 \neq -1$.」(任意の実数 x に対して $x^2 \neq -1$ となる.)

であり、 論理記号を用いると

命題 \bar{P} : $\forall x \in \mathbb{R} \ (x^2 \neq -1)$.

となる. P は真の命題である.

練習問題.以下の二つの命題を言葉で表し、違いを考察せよ.また、否定命題および真偽も調べよ.

命題 Q: $\forall x \in \mathbb{R} \ (\exists y \in \mathbb{R} \ (x \le y)),$ 命題 R: $\exists y \in \mathbb{R} \ (\forall x \in \mathbb{R} \ (x \le y))$